
Robust Planning with Imperfect Models

Russell Knight, Gregg Rabideau, Barbara Engelhardt, Steve Chien,
Jet Propulsion Lab, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91 109-8099
(knight, rabideau, engelhar, chien) @aig.jpl.nasa.gov

Abstract
In general, most approaches to robust autonomy with
respect to planning and execution are focused on
either providing models that allow for flexibility or
providing techniques for changing models to improve
performance. We take these techniques into
consideration, but focus the majority of our work on
robust autonomous planning and execution with
imperfect models. We deal with this through a number
of means: 1) providing fast replanning in the event of
unforeseen events, 2) modeling execution context, and
3) adjusting the planning and scheduling system
heuristics given a model of the uncertainty of the
environment. We have demonstrated these techniques
using the Continuous Activity Scheduling, Planning,
Execution, and Replanning (CASPER) system.

Introduction
Robust autonomy within the context of planning and
execution is central to many NASA and JPL missions. Not
only do communications constraints demand more
autonomy but also budgetary constraints that demand more
automation. In this context, systems must be able to
autonomously plan, execute, and respond to the
environment. Often, models are used for planning, and
feedback systems provide the execution, using a number of
layers to provide the required levels of abstraction and
detail with respect to task dispatching and execution. A
designer can provide robustness in one of three ways:

1) provide a flexible model which entails all

2) provide a system that modifies the model in the

3) provide a system that attempts to be as robust as

possibilities of interest,

face of unexpected events, and

possible with a given model.

Model flexibility is probably the most common
technique for providing robustness. Examples are the use
of temporal constraint networks [9], resource profiling, and
contingency planning [IO]. The primary advantage of such
systems is a-priori knowledge of its performance. But,
some systems produce plans that in the end are overly
pessimistic. For example, a task might take on average 10

minutes to complete, but can vary from 5 to 15 minutes
according to a distribution. So, if we planned a large
number of such tasks, human experts might use the average
case time to project feasibility. Unfortunately, systems that
provide model flexibility often would be forced to assume
that each task would require 15 minutes. Even those that
provide a margin of error (say, 1 standard deviation is
acceptable) would choose a fixed approximated time for
the events regardless of the number of events.

Changing models or developing new models
automatically is quite an open area of research, and several
systems provide some utility in this area. Hidden Markov
Models, Neural Nets, and other adaptive systems fall into
this category [l I]. In practice, it has proven to be very
difficult to learn a model that a symbolic system can then
use for planning and scheduling, although this remains an
active area of research. Still, no spacecraft has of yet flown
with large-scale onboard adaptation of models and
autonomy (although see [17, 181 for a description of a
flight experiment of significant model-based autonomy).

Robust planning and execution compliments both
flexible modeling systems and model modification systems
in that the model is a given and the system provides
robustness through its execution and planning. Therefore,
we focus our efforts on providing robustness with a given
model. We accomplish this through a number of means:

1) providing fast replanning in the event of

2) modeling execution context, and
3) adjusting the planning and scheduling system

heuristics given a model of the uncertainty of the
environment.

unforeseen events,

Fast Re-planning
To facilitate fast replanning, we utilize an iterative repair
algorithm [1,2]. We accept that in some circumstances,
iterative repair does not perform as well as constructive
algorithms, however our experience has been that in
practice it has performed well for a number of real domains
[SI. Iterative repair is a natural choice for a system that
receives state updates because if an update causes a
conflict iterative repair naturally accepts a current plan

mailto:aig.jpl.nasa.gov

with a flaw and repairs it. The only algorithmic adaptation
that is needed i t to ensure that certain operations are not
allowed in an execution context (e.g., changing activities in
the past.)

During iterative repair, the conflicts in the schedule
are analyzed and addressed one at a time until no conflicts
exist, or a computation resource bound has been exceeded.
A conflict is a violation of a constraint. We consider the
following types of constraints: resources, states, temporal
relationships, parameter dependencies, and
decompositions. Conflicts can be repaired by means of
several predefined methods. We consider the following
repair methods: moving an activity, adding a new instance
of an activity, deleting an activity, detailing an activity,
abstracting an activity, making a reservation of an activity,
canceling a reservation, connecting a temporal constraint,
disconnecting a constraint, and changing a parameter
value. The repair algorithm first selects a conflict to repair
then selects a repair method. The type of conflict being
resolved determines which methods can repair the conflict.
Depending on the selected method, the algorithm may need
to make addition decisions. For example, when moving an
activity, the algorithm must select a new start time for the
activity.

To achieve a higher level of responsiveness in a
dynamic planning situation, we utilize a continuous
planning approach and have implemented a system called
CASPER (for Continuous Activity Scheduling Planning
Execution and Replanning) [3, 81. Rather than considering
planning a batch process in which a planner is presented
with goals and an initial state, the planner has a current
goal set, a plan, a current state, and a model of the
expected future state. At any time an incremental update
to the goals, current state, or planning horizon (at much
smaller time increments than batch planning) may update
the current state of the plan and thereby invoke the planner
process. This update may be an unexpected event or simply
time progressing forward. The planner is then responsible
for maintaining a consistent, satisficing plan with the most
current information. This current plan and projection is the
planner’s estimation as to what it expects to happen in the
world if things go as expected. However, since things
rarely go exactly as expected, the planner stands ready to
continually modify the plan. From the point of view of the
planner, in each cycle the following occurs:

changes to the goals and the initial state first posted to
the plan,
effects of these changes are propagated through the
current plan projections (includes conflict
identification)

0 iterative repair is invoked to remove conflicts and
make the plan appropriate for the current state and
goals.

This approach is shown in below in Figure I . At each step,
the plan is created by using iterative repair with:

0 the portion of the old plan for the current planning

0 the updated goals and state; and
the new (extended) planning horizon.

horizon;

Fig. 1 Continuous Planning Incremental Extension

~~ ~ ~~~~

Modeling Execution Context
Modeling execution context provides a way to give the
planner information about the execution. Ideally, this
would not disrupt the design of the planner to the point that
we need to research an entirely different problem. We
achieve this through these means:

1. Abstraction Hierarchies
2. Commitment Strategies

Abstraction hierarchies provide information about the
criticality of detail required given the current time with
respect to an executing plan (see Figure 2). For example,
consider the minutiae involved with executing the plan
“get in the car, drive to McDonalds, buy some fries.”
When actually getting in the car, we take input from our
environment before we actually decide on what way we
will actually expand this activity. We might enter on the
passenger side if the driver’s side is blocked by our teenage
daughter’s car. But, when making the plan, we do allot a
certain amount of time and other scarce resources.
Basically, as activities become more urgent, our view of
them changes, and we need to plan more details. If we plan
all details in advance, we may waste considerable
computational resources on decisions that become
invalidated during execution.

I I I

-
Fig. 2 Hierarchical Planning Horizons

Of course, this requires a certain amount of modeling,
and one could argue that we are simply including
execution context in the modeling problem and are
therefore more similar to flexible modeling systems than
we claim. This is true, if you consider modeling execution
as an end. But, we model abstraction hierarchies to
improve the responsiveness of the planner by simplifying
the problems that we ask it to solve, not improve the actual
veracity of a model.

Commitment strategies are another way to make the
execution of a plan more robust. In many planning
systems, some execution robustness is achieved using
least-commitment techniques throughout planning to retain
plan flexibility. In practice, however, many problems are
over-constrained and the planner must interface to other
software components that cannot handle flexible values.
This can significantly reduce the flexibility of the resulting
plans. Instead, we commit to decisions during planning (for
the given abstraction hierarchies) but only commit to an
upcoming piece of the plan for execution. Basically,
commitment strategies are decisions about when to freeze
decisions about an activity. For example, we could never
change any information about an activity in the past
(except by receiving information from the environment), so
past activities must be frozen or committed. By committed,
we mean that the planner is not allowed to change any
information about the activity, and it is ready to dispatch to
the execution system. But, how early must we commit
activities? Should we wait until the last second, choose a
different strategy for each type of activity, or choose a
different strategy for each activity instance?

We choose to model the commitment strategy for each
activity type. This affords us a significant amount of
flexibility in designing an appropriate commitment strategy
for different execution contexts.

Adjusting the Planner
Another way we provide robustness with imperfect models
is by automatically adjusting the planner’s search
heuristics to the domain in question. This is facilitated
using a technique called Adaptive Problem Solving (A P S)
[6]. The basic idea is that by inferring a probabilistic model
of the domain, we can automatically adjust the planner to
provide robust replanning for the simulation.

The advantages of this are clear-given a model, we
can adjust a planner’s parameters to perform well on a
problem regardless of flaws in the planner, the planner’s
heuristics, or the planner’s parameters. This means that
certain types of programming errors, logical flaws, and
lack of domain expert advice can be automatically
corrected.

Adaptive problem solvir;g uses stochastic optimization
[161 to find the best parameters for a planner applied to a
specific domain. The algorithm takes the set of parameters

to optimize, called strategies, and selects the strategy that
has the highest expected utility using a decision criterion.
Using the selected strategy, the algorithm makes local
steps using a chosen neighborhood algorithm (e.g.. local
mutations or genetics-inspired search) to generate the
subsequent set of strategies. The algorithm stops when i t
reaches a maximum time or number of iterations, or
quiescence.

Expected utility is the criteria by which the strategies
are ranked. Expected utility is the average utility of the
final plan, repaired using the chosen strategy, over a
number of stochastic simulations of the domain with
stochastic starting points (or alternatively execution traces
in the environment). Higher expected utilities, where
utility is defined by the domain preferences, can be built so
as to be a criterion for robustness.

The decision criterion used in adaptive problem
solving enables strategy selection at a low sampling cost.
Statistical decision criteria, such as the Nadas criterion
[151, Bernstein’s inequality[141, Hoeffding’s
inequality[131, and Chernoff Bounds [121, generate
estimates of their expected utility based on sampling the
strategies in the stochastic domain. The criteria are used to
determine when the number of samples is enough to
guarantee the selection accuracy within a certain error.
Error allocation techniques are used to enable selection
with a minimal number of samples.

APS can be applied to any parameter of the planner,
including (but not limited to) the commitment strategy, the
set of heuristics used by the planner, weightings of these
heuristics, or the amount of time dedicated to replanning.

It should be noted that this could also be applied on-
line, but in practice the number of epochs to produce a
significantly better planner may be very high. Even in
ground-based simulations, APS would enable a planner to
improve robustness by learning its parameters based on
feedback from the environment.

Discussion and Future Work
Robustness can be thought of as an aspect of plan quality.
We may have a preference for more robust plans, but this
must be weighed other preferences. Often there is a
preference for packing the plan with as many goals as
possible, which can often decrease robustness. We plan to
provide a representation for robustness preferences and use
optimization techniques from [4] to help maintain robust
plans.

However, preferences of this type can be particularly
difficult to express. In addition, they often directly compete
with many of the science objectives. For example, one
dominant objective is to simply achieve as many goals as
possible. This requires packing activities into the time
frame of the plan. Tight temporal and resource packing can
leave very little room for execution error, resulting in a

I Maximum

I
I

Fig. 3 Robustness as a function of response time
characteristics

brittle plan. We would like the user to be able to express
preferences for keeping the plan robust and making an
informed trade-off with other preferences.

Plan robustness can vary over the temporal boundaries
of the plan. Robustness at time t is a function of the
maximum allowable response time at time t and the
distribution of potential responses that may be required at
time t . In other words, a plan ,S robust if responses are fast
relative to the time limits for making the responses. We
can determine approximate actual and maximum response
times using static analysis and simulations. The necessary
response at a given time depends on the constraints and
dependencies associated with the activities in the plan at
that time. Static analysis will reveal the constraint
networks and response time will be approximately
correlated to the complexity of these networks. Running
simulations of plan executions in dynamic environments
will also give us estimates of response time distributions.

Once we have response time (i.e., re-planning time)
information, we can evaluate and improve a robustness
preference. Robustness can be viewed as a function of the
probability of failure, where failure occurs when response
time is greater than the maximum allowable. This is the
area under the response time distribution curve and greater
than the maximum response time (see Figure 3).
Robustness will increase if we: 1) decrease the response
time mean or standard deviation, or 2) increase the
maximum allowable response time. Thus, either can be
done to increase quality. Understanding and decreasing the
response time mean and standard deviation is a difficult
problem. This can be thought of as analyzing the edit
distance between a plan and its neighboring valid plans [5].
Robust plans will have smaller edit distances, and the
challenge is keeping the average distance small. The
alternative, increasing maximum response time, is only a
slightly less difficult problem. Here, we can analyze and
relax the dependencies between activities in the plan.

Conclusion
We have classified the three approaches to robustness with
respect to models in a planning and execution context. We
argue that robust execution and planning can occur in the
face of imperfect models, and have described three
techniques for achieving this robustness. They are: 1)
providing fast replanning in the event of unforeseen events,
2) modeling execution context, and 3) adjusting the
planning and scheduling system heuristics given a model
of the uncertainty of the environment.

Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

References
[I] M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repaii .” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.
[2] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, ”Iterative Repair Planning for Spacecraft
Operations in the ASPEN System,” International
Symposium on Artificial Intelligence Robotics and
Automation in Space, Noordwijk, The Netherlands, June
1999.
[3] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, “Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,” In
Proceedings of the FLjih International Conference on
Artificial Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000.
[4] G. Rabideau, B. Engelhardt, S. Chien, Using Generic
Preferences to Incrementally Improve Plan Quality, In
Proceedings of the Fijih International Conference on
Artificial Intelligence Planning and Scheduling, 2000,236-
245.
[5] M. Ginsberg, A. Parkes, A. Roy, Supermodels and
Robustness, In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 1998, 334-339.
[6] B. Engelhardt, S. Chien. Empirical Evaluation of Local
Search Methods for Adapting Planning Policies in a
Stochastic Environment. Local Search in Planning and
Scheduling, Springer-Verlag, 2001.
[7] S. Chien, R. Knight, G. Rabideau, “An Empirical
Evaluation of the effectiveness of local search
forreplanning,” Local Search in Planning and Scheduling,
Springer-Verlag, 2001.

